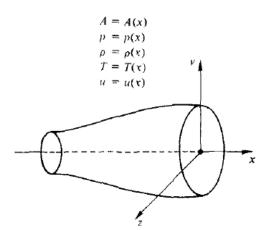
GAS DYNAMICS

QUASI ONE DIMENSIONAL FLOW

A flow, where the area varies as A = A(x) but it is assumed that p, p, T and u are still functions of x only, is defined as quasi-one-dimensional flow.



CONSERVATION EQUATIONS

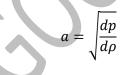
1. Continuity Equation:

$$\rho_1 A_1 u_1 = \rho_2 A_2 u_2$$

$$p_1A_1 + \rho_1A_1u_1^2 = p_2A_2 + \rho_2A_2u_2^2$$

3. Energy equation: $h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$

SPEED OF SOUND



For incompressible flow, speed of sound is infinite.

$$a = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\gamma RT}$$

The speed of sound in air at standard sea level conditions is

a = 340.9 m/s

Mach number is defined as M = V/a, which leads to the following classification of different flow regimes:

M < 1 (Subsonic flow)

M = 1 (Sonic flow)

M > 1 (Supersonic flow)

STAGNATION STATE

Stagnation state is obtained by decelerating a gas isentropically to zero velocity at zero elevation.

Stagnation Enthalpy

$$h_0 = h + \frac{c^2}{2}$$

Stagnation temperature

$$T_0 = T + \frac{c^2}{2C_p}$$

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2$$

Stagnation Pressure

For isentropic flow,

$$\frac{P_2}{P_1} = (\frac{T_2}{T_1})^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{P_2}{P_1} = (1 + \frac{\gamma - 1}{2}M^2)^{\frac{\gamma}{\gamma - 1}}$$

Stagnation Density

For isentropic flow,

$$\frac{\rho_2}{\rho_1} = (\frac{T_2}{T_1})^{\frac{1}{\gamma - 1}}$$

$$\frac{\rho_0}{\rho} = (1 + \frac{\gamma - 1}{2}M^2)^{\frac{1}{\gamma - 1}}$$

Contact us: +91 -9933949303 / 7338451418 Write: <u>info@goodwillgate2iit.com</u> Web:<u>www.goodwillgate2iit.com</u>

Page 1

Stagnation velocity of sound

$$a_0 = \sqrt{\gamma R T_0}$$

CHOKED FLOW

A flow which has a maximum mass flow rate is known as choked flow. Flows will choke at area minima in a duct.

- M = 1
- Mass flow rate is maximum
- Properties are represented as P*, T*, ρ*, a*, A*

$$\frac{T_0}{T^*} = \frac{\gamma + 1}{2}$$
$$\frac{P_0}{P^*} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_0}{\rho^*} = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}}$$

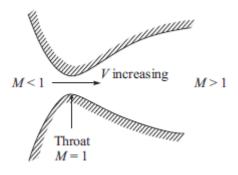
AREA VELOCITY RELATION

$$\frac{dA}{A} = \frac{dV}{V}(M^2 - 1)$$

- For 0 ≤ M ≤ 1, a decrease in area results in increase of velocity, and vice versa. Therefore, the velocity increases in a convergent duct and decreases in a divergent duct. This result for compressible subsonic flows is the same as that for incompressible flow.
- For M > 1, an increase in area results in increase of velocity and vice versa, i.e. the velocity increases in a divergent duct and decreases in a convergent duct. This is directly opposite to the behaviour of subsonic flow in divergent and convergent ducts.
- For *M* = 1, by Eq. (4.27), *dA/A* = 0, which implies that the location where the Mach number is unity, the area of the passage is either minimum or maximum. The minimum area is the only physically realistic solution.

Velocity, V	Subsonic, $M \le 1$	Supersonic, $M > 1$
Increases	Flow	Flow
Decreases	Flow	

- From the above discussions, it is clear that for a gas to expand isentropically from subsonic to supersonic speeds; it must flow through a convergent divergent duct, as shown in Figure. The minimum area that divides the convergent and divergent sections of the duct is called the *throat*. From point 4 above, we know that the flow at the throat must be sonic with *M* =
 - Conversely, for a gas to get compressed isentropically from supersonic to subsonic speeds, it must again flow through a convergent-divergent duct, with a throat where sonic flow occurs.

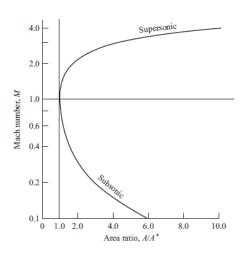


AREA MACH RELATION

$$\frac{A}{A^*} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

- The Mach number at any location in the duct is a function of the ratio of the local area of the duct to the sonic throat area.
- The local duct area, A, must be larger than or at least equal to A*, the case in which A < A* is physically impossible in an isentropic flow.

 For any given A/A* > 1, two values of M are obtained: a subsonic value and a supersonic value.



CHOCKED MASS FLOW RATE OF THE NOZZLE

The mass flow rate of the nozzle remains unaltered after flow gets chocked. This chocked mass flow rate can be calculated as

$$\dot{m} = \rho^* u^* A^*$$

But we know that,

$$\frac{p_0}{p^*} = \left[\frac{(\gamma+1)}{2}\right]^{\overline{(\gamma-1)}}$$
$$u^* = a^* = \sqrt{\gamma RT^*}$$

Hence

$$\begin{split} \dot{m} &= \rho_0 \left[\frac{(\gamma+1)}{2} \right]^{\frac{-1}{(\gamma-1)}} \sqrt{\gamma R T^*} A^* \\ \dot{m} &= \rho_0 \left[\frac{(\gamma+1)}{2} \right]^{\frac{-1}{(\gamma-1)}} \sqrt{\gamma R \frac{T^*}{T_0} T_0} A^* \\ \rho_0 &= \frac{p_0}{R T_0} \\ \frac{T^*}{T_0} &= \left[1 + \frac{(\gamma-1)}{2} \right]^{-1} \end{split}$$

Hence

$$\dot{m} = \frac{p_0}{RT_0} \left[\frac{(\gamma+1)}{2} \right]^{\frac{-1}{(\gamma-1)}} \sqrt{\gamma R \frac{T^*}{T_0} T_0} A^*$$
$$\dot{m} = p_0 \left[\frac{(\gamma+1)}{2} \right]^{\frac{-(\gamma+1)}{2(\gamma-1)}} \sqrt{\frac{\gamma}{RT_0}} A^*$$

From this expression it is clear that for a convergent divergent nozzle, for given throat area, choked mass flow rate remains constant for the fixed reservoir (P_0 and T_0) conditions. Therefore choked mass flow rate can be increased by increasing the reservoir pressure P_0 or decreasing reservoir temperature T_0 .

CHARACTERISTIC MACH NUMBER

It is the ratio of local flow speed and critical speed of sound,

$$M^{*2} = \frac{M^2(\frac{\gamma+1}{2})}{1+\frac{\gamma-1}{2}M^2}$$

It can be observed:

$$M^* = 1 \text{ if } M = 1$$
$$M^* < 1 \text{ if } M < 1$$
$$M^* > 1 \text{ if } M > 1$$
$$M^* \rightarrow \sqrt{\frac{\gamma + 1}{\gamma - 1}} \text{ if } M \rightarrow 1$$

Hence, qualitatively, M^* behaves in the same manner as M, except when M goes to infinity. M^* will be a useful parameter for further building of the subject involving shocks and expansion waves because it approaches a finite value as Mapproaches infinity.

Contact us: +91 -9933949303 / 7338451418 Write: <u>info@goodwillgate2iit.com</u> Web:<u>www.goodwillgate2iit.com</u>