

IIT-JEE | MEDICAL | GATE AEROSPACE

MATHIEMATICS

GATE AEROSPACE

Prateek Tyagi

IIT-JEE I MEDICAL | GATE AEROSPACE

ORGANIZING INS'ITIU'TE:

IIT DELHI

AEROSPACE

 ENGINEERINGJoin GATE AEROPSACE DISCUSSSION FORUM on Facebook and clear all your doubts

Mathematics Syllabus

Core Topics:

Linear Algebra: Vector algebra, Matrix algebra, systems of linear equations, rank of a matrix, eigen values and eigen vectors.

Calculus: Functions of single variable, limits, continuity and differentiability, mean value theorem, chain rule, partial derivatives, maxima and minima, gradient, divergence and curl, directional derivatives. Integration, Line, surface and volume integrals. Theorems of Stokes, Gauss and Green.

Differential Equations: First order linear and nonlinear differential equations, higher order linear ODEs with constant coefficients. Partial differential equations and separation of variables methods.

Special Topics: Fourier Series, Laplace Transforms, Numerical methods for linear and nonlinear algebraic equations, Numerical integration and differentiation.

Mathematics Year Wise Analysis

Year	No of Questions	Topics (1 marks + 2 marks)	Total Marks
2019	$\begin{aligned} & 1 M: 5 \\ & 2 M: 4 \end{aligned}$	- Linear Algebra $(0+2)$ - Differential Calculus $(3+2)$ - Vector Calculus $(2+0)$	13
2018	$\begin{aligned} & 1 M: 4 \\ & 2 M: 3 \end{aligned}$	- Linear Algebra ($1+0$) - Differential Calculus ($1+0$) - Vector Calculus ($2+2$) - ODE ($0+1$)	10
2017	$\begin{aligned} & 1 M: 5 \\ & 2 M: 5 \end{aligned}$	- Linear Algebra ($0+2$) - Vector Calculus (3+0) - ODE ($1+1$) - PDE ($0+1$) - Numerical Technique (1+0) - Laplace $(0+1)$	15
2016	$\begin{aligned} & 1 M: 5 \\ & 2 M: 4 \end{aligned}$	- Linear Algebra $(2+1)$ - Differential Calculus $(1+1)$ - Vector Calculus ($1+0$) - ODE ($0+1$) - PDE ($1+0$) - Numerical Technique (0+1)	13
2015	$\begin{aligned} & 1 M: 3 \\ & 2 M: 5 \end{aligned}$	- Linear Algebra (1+1) - Differential Calculus (1+1) - ODE ($0+2$) - PDE ($1+0$) - Numerical Technique (0+1)	13
2014	$\begin{aligned} & 1 M: 5 \\ & 2 M: 5 \end{aligned}$	- Linear Algebra (1+1) - Differential Calculus $(1+0)$ - Vector Calculus $(0+1)$ - ODE (1+1) - Numerical Technique (1+0) - Laplace ($0+1$) - Fourier Series $(0+1)$ - Series $(1+0)$	15
2013	$\begin{aligned} & 1 M: 4 \\ & 2 M: 4 \end{aligned}$	- Linear Algebra (1+1) - Differential Calculus $(2+0)$ - Vector Calculus $(1+1)$	12

		- ODE ($0+1$) - Laplace $(0+1)$	
2012	$\begin{aligned} & 1 M: 5 \\ & 2 M: 4 \end{aligned}$	- Linear Algebra ($2+1$) - Differential Calculus $(0+2)$ - ODE (2+0) - Numerical Technique (0+1) - Laplace $(1+0)$	13
2011	$\begin{aligned} & 1 M: 5 \\ & 2 M: 3 \end{aligned}$	- Linear Algebra (1+1) - Differential Calculus (2+0) - Vector Calculus (2+0) - ODE ($0+1$) - Numerical Technique ($0+1$)	11
2010	$\begin{aligned} & 1 M: 5 \\ & 2 M: 5 \end{aligned}$	- Linear Algebra ($1+0$) - Differential Calculus $(1+2)$ - Vector Calculus (1+1) - ODE ($1+0$) - PDE ($1+0$) - Numerical Technique (0+1) - Laplace $(0+1)$	15
2009	$\begin{aligned} & 1 M: 2 \\ & 2 M: 6 \end{aligned}$	- Linear Algebra (1+2) - Differential Calculus $(0+1)$ - ODE ($1+0$) - PDE ($0+0$) - Numerical Technique (0+2) - Laplace $(0+1)$	14
$\begin{gathered} 2008 \\ \text { (85 questions) } \end{gathered}$	$\begin{aligned} & 1 M: 3 \\ & 2 M: 9 \end{aligned}$	- Linear Algebra ($2+1$) - Differential Calculus $(0+1)$ - Vector Calculus $(0+3)$ - ODE (1+1) - Numerical Technique ($0+2$) - Laplace $(0+1)$	21 (Total 150 marks)
$\begin{gathered} 2007 \\ \text { (85 questions) } \end{gathered}$	$\begin{gathered} 1 M: 3 \\ 2 M: 12 \end{gathered}$	- Linear Algebra (1+4) - Differential Calculus (1+1) - Vector Calculus ($0+1$) - ODE ($0+2$) - Numerical Technique (1+2) - Laplace $(0+2)$	$\begin{gathered} 27 \\ \text { (Total } 150 \end{gathered}$ marks)

TABLE OF CONTENT

1. Linear Algebra $1-40$
2. Differential Calculus 41-69
3. Vector Calculus $70-88$
4. Ordinary Differential Equations 89-116
5. Partial Differential Equations 117-134
6. Numerical Technique 135-162
7. Laplace Transform 163-184
8. Fourier Series 185-192
9. Convergence \& Divergence of Series 193-200

- GATE and Practice questions
- Previous year GATE questions solved

Chapter 1

LINEAR ALGEBRA

The branch of mathematics that deals with the theory of systems of linear equations, matrices, vector spaces, and linear transformations.

1.1 MATRIX

A set of $m n$ numbers (real or imaginary) arranged in the form of a rectangular array of m rows and n columns is called an $m \times n$ matrix (to be read as ' m by n ' matrix)

An $m \times n$ matrix is usually written as

In compact form the above matrix is represented by

$$
\mathrm{A}=\left[a_{i j}\right]_{m \times n} \quad \text { or } \quad A=\left[a_{i j}\right]
$$

The numbers a_{11}, a_{12}, \ldots etc. are known as the elements of the matrix A . The element a belongs to $\mathrm{i}^{\text {th }}$ row and $j^{\text {th }}$ column and is called the $(i, j)^{\text {th }}$ element of the matrix
$A=\left[a_{i j}\right]$ Thus, in the element $a_{i j}$, the first subscript i always denotes the number of rows and the second subscript j, denotes the number of columns in which the element occurs.
e.g., $\quad A=\left[\begin{array}{cc}\sin x & \cos x \\ \cos x & -\sin x\end{array}\right]$
is a matrix having 2 rows and 2 columns and so it is a matrix of order 2×2 such that $a_{11}=\sin x$, $a_{12}=\cos \mathrm{x}, b_{21}=\cos \mathrm{x}, b_{22}=-\sin \mathrm{x}$

1.2 TYPE OF MATRICES

- Row Matrix

A matrix having only one row is called a row matrix or a row vector.
For example, $A=\left[\begin{array}{lll}1 & 2 & 3\end{array} 4\right]$ is a row matrix of order 1×4.

- Column Matrix

A matrix having only one column is called a column matrix or column vector.
For example, $A=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ is column matrix of order 3×1.

- Square Matrix

A matrix in which the number of rows is equal to the number of columns, say n is called a square matrix of order n.

A square matrix of order n is also called a n-rowed square matrix. The elements $a_{i j}$ of a square matrix $A=\left[a_{i j}\right]_{n \times n}$ for which $i=j$, the elements $a_{11}, a_{22}, \ldots, a_{m n}$ are called the diagonal elements and the line along which they lie is called the principal diagonal or leading diagonal of the matrix.

For example, the matrix $\left[\begin{array}{ccc}2 & 2 & 3 \\ 3 & -2 & 3 \\ 1 & 6 & -3\end{array}\right]$ is a square matrix of order 3 in which the diagonal elements are $2,-2$ and -3 .

- Diagonal Matrix

A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called a diagonal, if all the elements except those in the leading diagonal, are zero
i.e., $a_{i j}=0, \forall \mathrm{i}$ j

A diagonal matrix of order $n \times n$ having $d_{1}, d_{2}, \ldots, d_{n}$ as diagonal elements is denoted by diagonal [d_{1}, $\left.d_{2}, \ldots, d_{n}\right]$

For example, the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$ is a diagonal matrix to be denoted by $A=\operatorname{diagonal}(1,4,3]$.
\qquad

1.3 EQUALITY OF MATRICES

Two matrices $A=\left[a_{i j}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{r \times s}$ are equal, if
(i) $m=r$, the number of rows in A equals the number of rows in B.
(ii) $n=s$ i.e., the number of columns in A equals the number of columns in B.
(iii) $a_{i j}=b_{i j}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ and $\mathrm{j}=1,2, \ldots, \mathrm{n}$. If two matrices A and B are equal, we write $A=B$, otherwise we write A B.

Example 1.1: Find the values of x, y, z and a which satisfy the matrix equation.

$$
\left[\begin{array}{ll}
x+3 & 2 y+x \\
z-1 & 4 a-6
\end{array}\right]=\left[\begin{array}{cc}
0 & -7 \\
3 & 2 a
\end{array}\right]
$$

Solution: Since, the corresponding elements of two equal matrices are equal. Therefore,
$x+3=0,2 y+x=-7, z-1=3$
and $4 a-6=2 a$
solving these equations, we get
$a=3, x=-3, y=-2, z=4$

1.26 SOLUTION OF LINEAR SYSTEM OF EQUATION Cramer's Rule or Method of Determinant

Consider the equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{3} z=d_{2} \\
& a_{3} x+b_{2} y+c_{3} z=d_{3}
\end{aligned}
$$

If the determinant of coefficient be

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Then, $\mathrm{x}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right| \div\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \quad(\Delta \neq 0)$
Similarly, $\mathrm{y}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right| \div\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

$$
\mathrm{z}=\left|\begin{array}{lll}
d_{1} & b_{1} & d_{1} \tag{iv}\\
d_{2} & b_{2} & d_{2} \\
d_{3} & b_{3} & d_{3}
\end{array}\right| \div\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

From Eqs. (ii), (iii) and (iv) giving the values of x, y and z constitute the cramer's rule

Example 1.10: Solve the equation $3 x+y+2 z=3,2 x-3 y-z=-3$ and $x+2 y+z=4$ by cramer's rule
Solution: here, $\Delta=\left|\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1\end{array}\right|=8 \quad$ (expanding by C_{1})
Then, $x=\frac{1}{\Delta}\left|\begin{array}{ccc}3 & 1 & 2 \\ -3 & -3 & -1 \\ 4 & 2 & 1\end{array}\right|=1 \quad$ (expanding by C_{1})

Similarly, $y=\frac{1}{\Delta}\left|\begin{array}{ccc}3 & 3 & 2 \\ 2 & -3 & -1 \\ 4 & 2 & 1\end{array}\right|=2$
And $z=\frac{1}{\Delta}\left|\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -3 \\ 1 & 2 & 4\end{array}\right|=-1$
Hence, $\mathrm{x}=1, \mathrm{y}=2$ and $\mathrm{z}=-1$.

1.27 CONSISTENCY OF LINEAR SYSTEM OF EQUATION

Consider the system of m linear equations.

$$
\left.\begin{array}{r}
a_{11} x_{1}+x_{12} x_{2}+\ldots+a_{1 n} x_{n}=K_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=K_{2} \tag{i}\\
: \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}= \\
: \\
K_{n}
\end{array}\right\}
$$

containing the n unknowns $x_{1}, x_{2}, \ldots, x_{n}$. To determine whether the Eq. (i) are consistant (i.e., possess a solution) or not, we consider the rank of the matrices.
$\mathrm{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
And $\mathrm{K}=\left[\begin{array}{cccc:c}a_{11} & a_{12} & \cdots & a_{1 n} & : \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \ldots & \ldots & \ldots & & K_{2} \\ a_{m 1} & a_{m 2} & \ldots & & a_{m n}\end{array}\right]$
A is the coefficient marix and K is called the augmented of the Eq. (i).

Rouche's Theorem

The system of Eq. (i) is consistent if and only if the coefficient matrix A and the augmented matrix K are of the same rank, otherwise the system is inconsistent the solution will be unique only when $r=$ n. Hence, the Eq. (1) are consistent.

Consistency of a System of Equations in n Unknowns (Matrix method)

Find the rank of the coefficient matrix A and the augmented matrix K, by reducing A to the triangular form by elementary row operations. Let the rank of A be r and that of K be r^{\prime}
(i) If $r \neq r^{\prime}$, the equations are inconsistent i.e., there is no solution.
(ii) If $r=r^{\prime}=n$, the equations are consistent and there is a unique solution.
(iii) If $r=r^{\prime}<n$, the equations are consistent and there are infinite number of solutions.

Giving arbitrary values to $n-r$ of the unknowns we may express the other r unknowns in terms of these.

Example 1.12: Test for consistency any solve
$5 x+3 y+7 z=4$,
$3 x+26 y+2 z=9$
$7 x+2 y+10 z=5$.
Solution: We have, $\left[\begin{array}{ccc}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 9 \\ 5\end{array}\right]$
$\left[\begin{array}{ccc}15 & 9 & 21 \\ 15 & 130 & 10 \\ 7 & 2 & 10\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ 45 \\ 5\end{array}\right]$ $\left(3 R_{1}, 5 R_{2}\right)$
$\left[\begin{array}{ccc}15 & 9 & 21 \\ 0 & 121 & -11 \\ 7 & 2 & 10\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ 33 \\ 5\end{array}\right] \quad\left(\mathrm{R}_{2}, \mathrm{R}_{1}\right)$
$\left[\begin{array}{ccc}35 & 21 & 49 \\ 0 & 11 & -1 \\ 35 & 10 & 50\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}28 \\ 3 \\ 25\end{array}\right] \quad\left(\frac{7}{3} \mathrm{R}_{1}, 5 \mathrm{R}_{3}, \frac{1}{11} R_{2}\right)$
$\left[\begin{array}{ccc}5 & 3 & 7 \\ 0 & 11 & -1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right] \quad\left(\mathrm{R}_{3}-\mathrm{R}_{1}+\mathrm{R}_{2}, \frac{7}{3} \mathrm{R}_{1}\right)$
The rank of coefficient matrix and augmented matrix for the last set of equations are both 2 . Hence, the equations are consistent. Also, the given system is equivalent to
$5 x+3 y+7 z=4,11 y-z=3$
$\mathrm{y}=\frac{3}{11}+\frac{z}{11}, x=\frac{7}{11}-\frac{16}{11} z$
where, z is a parameter.
Hence, $\mathrm{x}=\frac{7}{11}, y=\frac{3}{11}$ and $z=0$ is a particular solution

GATE QUESTIONS

Q1. The following system of equations

$$
\begin{aligned}
& 2 x-y-z=0 \\
& -x+2 y-z=0 \\
& -x-y+2 z=0
\end{aligned}
$$

a) has no solution
b) has unique solution
c) has three solutions
d) has an infinite number of solutions.
[GATE 2019]

Ans: d) has an infinite number of solutions.
Conditions: i) If $D=0$, then the system of equations are consistent with infinite non- trivial solution
ii) If $D \neq 0$, then the system of equations are consistent with trivial solution ($x=0, y=0, z=0$)
$D=\left|\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right|$
$=2(3)+1(-3)-1(1+2)$
$=6-3-3=0$
Therefore, infinite solutions

Q2. One of the eigen values of the following matrix is 1.

$$
\left(\begin{array}{cc}
x & 2 \\
-1 & 3
\end{array}\right)
$$

The other eigen value is \qquad [GATE 2019]
Ans: 2
$3+x=1+\lambda_{2} \quad$ [Sum of diagonal elements = sum of Eigen values]
$3 x+2=\lambda_{2} \quad$ [Determinant $=$ product of Eigen values]
On solving,
$3\left(\lambda_{2}-2\right)+2=\lambda_{2}$
$3 \lambda_{2}-6+2=\lambda_{2}$
$2 \lambda_{2}=4$
$\lambda_{2}=2$
Q3. The determinant of the $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & -3\end{array}\right]$ is ____ (accurate to one decimal place).
[GATE 2018]

Ans: zero

PRACTICE QUESTIONS

Q1. Nullity of the matrix $A=\left[\begin{array}{ccc}-1 & 4 & 2 \\ 1 & 3 & 2 \\ -2 & 1 & 0 \\ 2 & 6 & 4\end{array}\right]$ is
(a) 1
(b) 2
(c) 3
(d) 4

Ans: (a) 1

$$
\begin{array}{rlr}
A= & {\left[\begin{array}{ccc}
-1 & 4 & 2 \\
1 & 3 & 2 \\
-2 & 1 & 0 \\
2 & 6 & 4
\end{array}\right]} & \left(R_{2}+R_{1}, R_{3}+R_{4}\right) \\
& =\left[\begin{array}{ccc}
-1 & 4 & 2 \\
0 & 7 & 4 \\
0 & 7 & 4 \\
2 & 6 & 4
\end{array}\right] & \left(R_{4}+2 R_{1}\right)
\end{array}
$$

$$
=\left[\begin{array}{crr}
-1 & 4 & 2 \\
0 & 7 & 4 \\
0 & 7 & 4 \\
0 & 14 & 8
\end{array}\right]=2\left[\begin{array}{ccc}
-1 & 4 & 2 \\
0 & 7 & 4 \\
0 & 7 & 4 \\
0 & 7 & 4
\end{array}\right]=2\left[\begin{array}{ccc}
-1 & 4 & 2 \\
0 & 7 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence, rank of matrix $A=2=$ Number of non-zero rows
\therefore Nullity of matrix $A=$ Number of column of $A-R a n k$ of A

$$
=3-2=1
$$

Q2. If A and B are real symmetric matrices of size $n \times n$, then
(a) $A A^{\top}=1$
(b) $A=A^{-1}$
(c) $A B=B A$
(d) $(A B)^{\top}=B^{\top} A^{\top}$

Ans: (d) The transpose of the product of two matrices is the product in reverse order of their transposes (Reversal law for the transpose of a product).

Q3. Consider the following statements 2:
S_{1} : Sum of the two singular matrices may be non-singular.
S_{2} :Sum of the two non-singular $\mathrm{n} \times \mathrm{n}$ matrices may be singular.
Which of the following statements is correct?

Q13. How many solutions does the following system linear equations have?
$-x+5 y=-1$
$x-y=2$
$x+3 y=3$
(a) Infinitely many
(b) Two distinct solution
(c) Unique
(d) None who

Ans: (c) Unique
$-x+5 y=-1$
$x-y=2$
$x+3 y=3$
Solving Eqs. (i) and (ii), we get
$\mathrm{x}=\frac{9}{4}$ and $\mathrm{y}=\frac{1}{4}$
which satisfies Eq. (iii).
Hence, given system of linear equations have unique solution.
\qquad

Chapter 3

VECTOR CALCULUS

In general form vector can be written as

$$
\bar{a}=|a| \cdot \hat{a}=a \cdot \hat{a}
$$

In vector algebra

$$
\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \quad \text { where }, a_{1}, a_{2}, a_{3} \text { are constant }
$$

While in vector calculus a_{1}, a_{2} and a_{3} are variables
$\mathrm{Eg}: \bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is the radius vector

3.1 SCALAR PRODUCT (DOT PRODUCT)

$$
\bar{a} \cdot \bar{b}=a b \cos \theta
$$

Note: dot products always give scalar quantities
For orthogonal vectors, $\theta=90^{\circ}$

$$
\begin{gathered}
\bar{a} \cdot \bar{b}=0 \\
i \cdot \hat{\jmath}=i \cdot \hat{k}=j \cdot \hat{k}=0 \\
i \cdot \hat{\imath}=j \cdot \hat{\jmath}=k \cdot \hat{k}=1
\end{gathered}
$$

3.2 CROSS PRODUCT (VECTOR PRODUCT)

$$
\bar{a} \times \bar{b}=a b \sin \theta \cdot \hat{n}
$$

Note: Cross products always gives always vector

$$
\begin{gathered}
\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{k} \times \hat{k}=0 \\
i \times \hat{\jmath}=\hat{\jmath} \times \hat{k}=\hat{k} \times \hat{\jmath}=1 \\
\hat{\jmath} \times \hat{\imath}=-1
\end{gathered}
$$

$$
\bar{a} \times \bar{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

3.3 DEL OPERATOR (∇)

$\nabla=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)$

3.4 GRADIENT $\varnothing=(\nabla \varnothing)$

Where $\varnothing \rightarrow$ scalar quantity
$\nabla \cdot \phi=\left(\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}\right)=\sum i \frac{\partial \phi}{\partial x}$

- gives vector as output

Eg. if $\emptyset=x^{2} y+y z+x z$
Then $\nabla \varnothing=(2 x y+z) \hat{\imath}+\left(x^{2}+z\right) \hat{\jmath}+(x+y) \hat{k}$

3.5 DIVERGENCE $\overline{\boldsymbol{F}} \boldsymbol{(\nabla \cdot \overline { \boldsymbol { F } })}$

$\operatorname{Div} \bar{F}=\nabla \cdot \bar{F}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{k}\right)$
$\nabla \cdot \bar{F}=\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right)=\sum i \frac{\partial \bar{F}}{\partial x}$
Eg. If $\bar{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
Then $\operatorname{div} \bar{F}=1+1+1$
$\nabla \cdot \bar{F}=3$

NOTE: if divergence of ' F ' is zero then the vector \bar{F} is known as solenoidal vector

$$
\nabla \cdot \bar{F}=0
$$

Example 3.1: If $\varnothing=x^{3}+y^{3}+z^{3}-3 x y z$, find $\nabla \varnothing, \nabla \cdot \nabla \emptyset, \nabla \times \nabla \varnothing$ at $(1,2,3)$
Solution: $\nabla \varnothing=x^{3}+y^{3}+z^{3}-3 x y z$
$\nabla \cdot \emptyset=\left(3 x^{2}-3 y z\right) \hat{\imath}+\left(3 y^{2}-3 x z\right) \hat{\jmath}+\left(3 z^{2}-3 x y\right) \hat{k}$
$(\nabla \varnothing)_{1,2,3}=(3-9) \hat{\imath}+(12-9) \hat{\jmath}+(27-6) \hat{k}$
$(\nabla \emptyset)_{1,2,3}=-15 \hat{\imath}+3 \hat{\jmath}+\mathbf{2 1} \widehat{\boldsymbol{k}}$
$\nabla \cdot \nabla \emptyset=6 x \hat{\imath}+6 y \hat{\jmath}+6 z \hat{k}$
$(\nabla \varnothing)_{1,2,3}=6 \hat{\imath}+12 \hat{\jmath}+18 \widehat{k}$

$$
\begin{aligned}
\nabla \times \nabla \varnothing & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x^{2}-3 y z & 3 y^{2}-3 x z & 3 z^{2}-3 x y
\end{array}\right| \\
& =\hat{\imath}(-3 x+3 x)-\hat{\jmath}(-3 y-3 y)+\hat{k}(-3 z+3 z) \\
& =0
\end{aligned}
$$

3.6 CURL• \bar{F}

Curl $\cdot \bar{F}=\nabla \times \bar{F}=\left|\begin{array}{lll}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3}\end{array}\right|=\sum i \times \frac{\partial f}{\partial x}$
NOTE: if Curl $\bar{F}=0$ then \bar{F} is an irrotational vector. It can be represented as $\bar{F}=\nabla \emptyset$ (where \emptyset is known as scalar potential)

Example 3.2: Prove that $\nabla \varnothing$ is an irrotational value

Solution:

$\nabla \times \nabla \emptyset=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} & \frac{\partial \theta}{\partial z}\end{array}\right|$
$=\hat{\imath}\left(\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial y \partial z}\right)-\hat{\jmath}\left(\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{2} \phi}{\partial z \partial x}\right)+\hat{k}\left(\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}\right)$
$=0$

3.12 INTEGRAL THEOREM

(1) Green's Theorem

If P, Q are the function of x, y and having continuous partial derivatives in a region r enclosed by a closed curve C then

$$
\oint_{c}(P \cdot d x+Q \cdot d y)=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

- Green's theorem in plane is a scalar of stokes theorem.

(2) Stroke's Theorem

If S is an open surface enclosed by a closed curve C and \bar{F} is a vector point function having continuous partial derivatives then

$$
\oint_{c} \bar{F} \cdot d \bar{r}=\iint_{s} \operatorname{curl} \bar{F} \cdot d \bar{s}=\iint_{s} \operatorname{curl} \bar{F} \cdot \hat{n} \cdot d s
$$

- This is the relationship between line integral and surface integral

(3) Gauss Divergence Theorem

If S is an close surface of the region and closing a volume V and \bar{F} has continuous partial derivatives then

$$
\iint \bar{F} \cdot \hat{n} \cdot d s=\iiint_{v} d i v \bar{F} \cdot d x d y d z
$$

- This is a relationship between a surface integral and volume integral
- Gauss divergence theorem is referred to as Green's theorem in space

(4) Scalar form of Gauss Divergence Theorm

$$
\iint_{S} P d y d z+Q d x d z+R d x d y=\iiint_{V}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d x d y d z
$$

GATE QUESTIONS

Q1. Vector $\overrightarrow{\mathrm{b}}$ is obtained by rotating $\overrightarrow{\mathrm{a}}=\hat{\imath}+\hat{\jmath}$ by 90° about $\hat{\mathrm{k}}$, where $\hat{\imath}, \hat{\jmath}$ and $\hat{\mathrm{k}}$ are unit vectors along the x, y and z axes, respectively. \vec{b} is given by
a) $\hat{\imath}-\hat{\jmath}$
b) $-\hat{\imath}+\hat{\jmath}$
c) $\hat{\imath}+\hat{\jmath}$
d) $-\hat{\imath}-\hat{\jmath}$
[GATE
2019]

Ans: b) -î + \mathfrak{j}
Given: $\vec{a}=\hat{\imath}+\hat{\jmath}$

$$
\begin{gathered}
\vec{b}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
=-\hat{\imath}+\hat{\jmath}
\end{gathered}
$$

Q2. A scalar function is given by $f(x, y)=x^{2}+y^{2}$. Take $\hat{\imath}$ and $\hat{\jmath}$ as unit vectors along the x and y axes, respectively. At $(x, y)=(3,4)$, the direction along which fincreases the fastest is
a) $\frac{1}{5}(4 \hat{\imath}-3 \hat{\jmath})$
b) $\frac{1}{5}(3 \hat{\imath}-4 \hat{\jmath})$
c) $\frac{1}{5}(3 \hat{\imath}+4 \hat{\jmath})$
d) $\frac{1}{5}(4 \hat{\imath}+3 \hat{\jmath})$
[GATE

2019]

Ans: c) $\frac{1}{5}(3 \hat{\imath}+4 \hat{j})$
Given: $f(x, y)=x^{2}+y^{2}$

$$
\begin{gathered}
\nabla \mathrm{f}=2 \mathrm{x} \hat{\imath}+2 y \hat{\jmath} \\
\left.\nabla \mathrm{f}\right|_{(3,4)}=6 \hat{\imath}+8 \hat{\jmath} \\
(\nabla \hat{f})=\frac{6 \hat{\imath}+8 \hat{\jmath}}{\sqrt{36+64}} \\
=\frac{6 \hat{\imath}+8 \hat{\jmath}}{10} \\
=\frac{1}{5}(3 \hat{\imath}+4 \hat{\jmath})
\end{gathered}
$$

Chapter 8

FOURIER SERIES

8.1 CONDITION FOR A FOURIER EXPANSION

Any function $f(x)$ can be developed as a Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where a_{0}, a_{n} and b_{n} are constants provided.
(i) $f(x)$ is periodic, single valued and finite.
(ii) $f(x)$ has a finite number of discontinuties in any one period.
(iii) $f(x)$ has at the most a finite number of maxima and minima.

8.2 IMPORTANT FORMULAE

$a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$
$a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$
$b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x$
Example 8.1: Obtain the Fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$

Solution:

$e^{-x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$

$$
\begin{align*}
& \boldsymbol{a}_{\mathbf{0}}= \frac{1}{\boldsymbol{\pi}} \int_{0}^{2 \pi} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} \tag{i}\\
&=\frac{1}{\pi} \int_{0}^{2 \pi} e^{-x} d x=\frac{1}{\pi}\left|-e^{-x}\right|_{0}^{2 \pi} \\
&=\frac{1-e^{-2 \pi}}{\pi} \\
& \boldsymbol{a}_{\boldsymbol{n}}=\frac{1}{\pi} \int_{0}^{2 \pi} \boldsymbol{f}(\boldsymbol{x}) \cos \boldsymbol{n} \boldsymbol{x} d \boldsymbol{x}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{2 \pi} e^{-x} \cos n x d x \\
& =\frac{1}{\pi\left(n^{2}+1\right)}\left[e^{-x}(-\cos n x+n \sin n x]_{0}^{2 \pi}\right. \\
= & \left(\frac{1-e^{-2 \pi}}{\pi}\right) \cdot \frac{1}{\left(n^{2}+1\right)} \\
\therefore \quad a_{1}= & \left(\frac{1-e^{-2 \pi}}{\pi}\right) \frac{1}{2}, a_{2}=\left(\frac{1-e^{-2 \pi}}{\pi}\right) \frac{1}{5} \text { etc } \\
\boldsymbol{b}_{n} & =\frac{\mathbf{1}}{\pi} \int_{0}^{2 \pi} \boldsymbol{f}(\boldsymbol{x}) \sin n x d x \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} e^{-x} \sin n x d x \\
& =\frac{1}{\pi\left(n^{2}+1\right)}\left[e^{-x}(-\sin n x+n \cos n x]_{0}^{2 \pi}\right. \\
= & \left(\frac{1-e^{-2 \pi}}{\pi}\right) \frac{n}{\left(n^{2}+1\right)} \\
\therefore \quad b_{1}= & \left(\frac{1-e^{-2 \pi}}{\pi}\right) \frac{1}{2}, b_{2}=\left(\frac{1-e^{-2 \pi}}{\pi}\right) \frac{1}{5} \text { etc }
\end{aligned}
$$

Substituting the values of a_{0}, a_{n} and b_{n} in Eq. (i), we get

$$
\begin{aligned}
e^{-x}=\frac{1-e^{-2 \pi}}{\pi} & \left\{\frac{1}{2}+\left(\frac{1}{2} \cos x+\frac{1}{5} \cos 2 x+\frac{1}{10} \cos 3 x+\cdots\right)\right. \\
& \left.+\left(\frac{1}{2} \sin x+\frac{1}{5} \sin 2 x+\frac{1}{10} \sin 3 x+\cdots\right)\right\}
\end{aligned}
$$

GATE AEROSPACE $2018 \& 2019$ TOPPERS

AIR-7
Probuddho Chatterjee

$$
\text { AIR - } 12
$$

Himanshu Giria

AIR-256
Aishwarya Gururaj

AIR - 260
Debanjali Dey

AIR - 72
Saurabh
Nagariya

Air-219
Ratnesh Kumar

AIR - 93 Bhaskar Mondal

AIR-157 Harish Harish

KRISHNA AVATAR AIR - 3

AIR - 84

ANKIT VISHNOI AIR - 66

HIREN VAGHASIYA

AIR - 58

IITENDER SHARMA AIR - 87

AIR - 26
Sayantan Chaudhuri

AIR - 47
Patel
Sandipkumar Kumar Neeruganti

AIR-109 Bhanu Pratap Singh

AIR-198 Lakshmi ED

AIR - 274
Burhanuddin Kapadia

AIR - 109
Ashish
Tripathi

AIR-217
Mayuresh Vaze

AIR - 275
Rajdip
Ghosh

AIR-123
Gokul Ram

AIR-219
Prashanth A Telkar

AIR - 286
Anubhav Halder

