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Mathematics Year Wise Analysis 
 

 
 

 

Year 

No of 
Questions 

Topics (1 marks + 2 marks) Total 
Marks 

2019 
1M : 5 
2M : 4 

 Linear Algebra (0+2) 

 Differential Calculus (3+2) 
 Vector Calculus (2+0) 

13 

2018 
1M : 4 
2M : 3 

 Linear Algebra (1+0) 

 Differential Calculus (1+0) 
 Vector Calculus (2+2) 

 ODE (0+1) 

10 

2017 
1M : 5 
2M : 5 

 Linear Algebra (0+2) 

 Vector Calculus (3+0) 

 ODE (1+1) 
 PDE (0+1) 

 Numerical Technique 
(1+0) 

 Laplace (0+1) 

15 

2016 1M : 5 
2M : 4 

 Linear Algebra (2+1) 

 Differential Calculus (1+1) 
 Vector Calculus (1+0) 

 ODE (0+1) 
 PDE (1+0) 

 Numerical Technique 
(0+1) 

 
 

13 
 

2015 
1M : 3 
2M : 5 

 Linear Algebra (1+1) 

 Differential Calculus (1+1) 
 ODE (0+2) 

 PDE (1+0) 
 Numerical Technique 

(0+1) 

 
13 

 

2014  
1M : 5 
2M : 5 

 Linear Algebra (1+1) 

 Differential Calculus (1+0) 
 Vector Calculus (0+1) 

 ODE (1+1) 

 Numerical Technique 
(1+0) 

 Laplace (0+1) 
 Fourier Series(0+1) 
 Series(1+0) 

15 

2013 
1M : 4 
2M : 4 

 Linear Algebra (1+1) 
 Differential Calculus (2+0) 

 Vector Calculus (1+1) 
12 
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 ODE (0+1) 

 Laplace (0+1) 

2012 
1M:5 
2M:4 

 Linear Algebra (2+1) 

 Differential Calculus (0+2) 
 ODE (2+0) 

 Numerical Technique 
(0+1) 

 Laplace (1+0) 

13 

2011 
1M:5 

2M:3 

 Linear Algebra (1+1) 

 Differential Calculus (2+0) 
 Vector Calculus (2+0) 

 ODE (0+1) 
 Numerical Technique 

(0+1) 

11 

2010 
1M:5 
2M:5 

 Linear Algebra (1+0) 
 Differential Calculus (1+2) 

 Vector Calculus (1+1) 
 ODE (1+0) 

 PDE (1+0) 
 Numerical Technique 

(0+1) 
 Laplace (0+1) 

15 

2009 
1M:2 
2M:6 

 Linear Algebra (1+2) 

 Differential Calculus (0+1) 
 ODE (1+0) 

 PDE (0+0) 
 Numerical Technique 

(0+2) 
 Laplace (0+1) 

14 

2008 
(85 questions) 

1M:3 
2M:9 

 Linear Algebra (2+1) 

 Differential Calculus (0+1) 
 Vector Calculus (0+3) 

 ODE (1+1) 
 Numerical Technique 

(0+2) 
 Laplace (0+1) 

21  
(Total 150 

marks) 

2007 
(85 questions) 

1M:3 
2M:12 

 Linear Algebra (1+4) 
 Differential Calculus (1+1) 

 Vector Calculus (0+1) 
 ODE (0+2) 

 Numerical Technique 

(1+2) 
 Laplace (0+2) 

27  
(Total 150 

marks) 
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Chapter 1 
LINEAR ALGEBRA 
The branch of mathematics that deals with the theory of systems of linear equations, matrices, 

vector spaces, and linear transformations.  

1.1 MATRIX 

A set of mn numbers (real or imaginary) arranged in the form of a rectangular array of m rows and n 

columns is called an m x n matrix (to be read as 'm by n’ matrix)  

An m x n matrix is usually written as  

 

 

 

In compact form the above matrix is represented by 

                        A = [𝑎𝑖𝑗]𝑚×𝑛
           𝑜𝑟     𝐴 = [𝑎𝑖𝑗]  

The numbers 𝑎11, 𝑎12, ... etc. are known as the elements of the matrix A. The element a belongs to ith 

row and jth column and is called the (i, j)th element of the matrix  

𝐴 = [𝑎𝑖𝑗]  Thus, in the element 𝑎𝑖𝑗  , the first subscript i always denotes the number of rows and the 

second subscript j, denotes the number of columns in which the element occurs.  

e.g.,                           𝐴 = [
sin 𝑥 cos 𝑥
cos 𝑥 − sin𝑥

] 

is a matrix having 2 rows and 2 columns and so it is a matrix of order 2 x 2 such that 𝑎11 = sin x,            

𝑎12 = cos x, 𝑏21 = cos x, 𝑏22= - sin x  

1.2 TYPE OF MATRICES  

 Row Matrix  

A matrix having only one row is called a row matrix or a row vector. 

For example, A = [1 2 3 4] is a row matrix of order 1 x 4.  
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 Column Matrix 

A matrix having only one column is called a column matrix or column vector.  

For example, A = [
1
2

−1
]  is column matrix of order 3 × 1.  

 Square Matrix  

A matrix in which the number of rows is equal to the number of columns, say n is called a square 

matrix of order n. 

A square matrix of order n is also called a n-rowed square matrix. The elements 𝑎𝑖𝑗  of a square 

matrix  𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
 for which i = j, the elements 𝑎11, 𝑎22, … , 𝑎𝑚𝑛  are called the diagonal elements 

and the line along which they lie is called the principal diagonal or leading diagonal of the matrix.  

For example, the matrix [
2 2 3
3 −2 3
1 6 −3

] is a square matrix of order 3 in which the diagonal elements 

are 2, -2 and -3.  

 Diagonal Matrix  

A square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
 is called a diagonal, if all the elements except those in the leading 

diagonal, are zero 

i.e., 𝑎𝑖𝑗  = 0, ∀  i   j 

A diagonal matrix of order n x n having d1 , d2, ..., dn as diagonal elements is denoted by diagonal [d1 , 

d2, ..., dn] 

For example, the matrix A = [
1 0 0
0 4 0
0 0 3

] is a diagonal matrix to be denoted by A = diagonal (1,4,3].  

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

-----------------------------------------------Pages missing in sample copy------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------- 

1.3 EQUALITY OF MATRICES  

Two matrices 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
 and 𝐵 = [𝑏𝑖𝑗]𝑟×𝑠

  are equal, if  

(i) m = r, the number of rows in A equals the number of rows in B.  

(ii) n= s i.e., the number of columns in A equals the number of columns in B.  

(iii) 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for i = 1, 2, ..., m and j = 1, 2, ..., n. If two matrices A and B are equal, we write A = B, 

otherwise we write A      B.  

Example 1.1: Find the values of x, y, z and a which satisfy the matrix equation.  
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[
𝑥 + 3 2𝑦 + 𝑥
𝑧 − 1 4𝑎 − 6

] = [
0 −7
3 2𝑎

] 

Solution: Since, the corresponding elements of two equal matrices are equal. Therefore,  

x + 3 = 0, 2y + x = -7, z -1 = 3  

and 4a – 6 = 2a 

solving these equations, we get 

a = 3, x = -3, y = -2, z = 4 

 

1.26 SOLUTION OF LINEAR SYSTEM OF EQUATION  

Cramer's Rule or Method of Determinant 

Consider the equations 

        a1 x + b1 y + c1 z = d1 

         a2 x + b2 y + c3 z = d2 

         a3 x + b2 y + c3 z = d3 

If the determinant of coefficient be  

∆ = |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| 

Then,   x = |

𝑑1 𝑏1 𝑐1
𝑑2 𝑏2 𝑐2

𝑑3 𝑏3 𝑐3

|  ÷ |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|          (∆ ≠ 0)                          ….(ii) 

Similarly, y = |

𝑎1 𝑑1 𝑐1
𝑎2 𝑑2 𝑐2

𝑎3 𝑑3 𝑐3

|  ÷  |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|                                              ….(iii) 

                z= |

𝑑1 𝑏1 𝑑1

𝑑2 𝑏2 𝑑2

𝑑3 𝑏3 𝑑3

|  ÷ |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|                                                 ….(iv) 

From Eqs. (ii), (iii) and (iv) giving the values of x, y and z constitute the cramer’s rule 

 

Example 1.10: Solve the equation 3x + y + 2z = 3, 2x – 3y – z = -3 and x + 2y + z = 4 by cramer’s rule 

Solution: here,     ∆ = |
3 1 2
2 −3 −1
1 2 1

| = 8                          (expanding by C1) 

Then, x = 
1

∆
 |

3 1 2
−3 −3 −1
4 2 1

| = 1                          (expanding by C1) 
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Similarly,  y = 
1

∆
 |
3 3 2
2 −3 −1
4 2 1

| = 2                      

And  z = 
1

∆
 |
3 1 2
2 −3 −3
1 2 4

| = −1                   

Hence, x = 1, y = 2 and z = -1.              

 

 

1.27 CONSISTENCY OF LINEAR SYSTEM OF 

EQUATION  

Consider the system of m linear equations. 

𝑎11𝑥1 + 𝑥12𝑥2 + …+ 𝑎1𝑛𝑥𝑛 = 𝐾1

𝑎21𝑥1 + 𝑎22𝑥2 + …+ 𝑎2𝑛𝑥𝑛 = 𝐾2

:                 ∶                        ∶             ∶
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+ . . . +𝑎𝑚𝑛𝑥𝑛 = 𝐾𝑛

}                                   …(i) 

containing the n unknowns x1 , x2 ,..., xn. To determine whether the Eq. (i) are consistant (i.e., possess 

a solution) or not, we consider the rank of the matrices.  

A = [

𝑎11 𝑎12 …
𝑎21 𝑎22 …
… … …

    
𝑎1𝑛

𝑎2𝑛

…
𝑎𝑚1 𝑎𝑚2    … 𝑎𝑚𝑛

] 

And  K = [

𝑎11 𝑎12 …
𝑎21 𝑎22 …
… … …

      

   

𝑎1𝑛 : 𝐾1

𝑎2𝑛 : 𝐾2

…
𝑎𝑚1 𝑎𝑚2 …         𝑎𝑚𝑛 : 𝐾𝑁

] 

A is the coefficient marix and K is called the augmented of the Eq. (i).  

 

Rouche's Theorem  

The system of Eq. (i) is consistent if and only if the coefficient matrix A and the augmented matrix K 

are of the same rank, otherwise the system is inconsistent the solution will be unique only when r = 

n. Hence, the Eq. (1) are consistent.  

Consistency of a System of Equations in n Unknowns (Matrix 

method) 

Find the rank of the coefficient matrix A and the augmented matrix K, by reducing A to the triangular 

form by elementary row operations. Let the rank of A be r and that of K be r’  

(i) If r ≠ r', the equations are inconsistent i.e., there is no solution.  

(ii) If r = r' = n, the equations are consistent and there is a unique solution.  
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(iii) If r = r' < n, the equations are consistent and there are infinite number of solutions.  

Giving arbitrary values to n - r of the unknowns we may express the other r unknowns in terms of 

these.  

 

Example 1.12: Test for consistency any solve  

5x + 3y +7z = 4,  

3x + 26 y + 2z = 9, 

7x + 2 y + 10z = 5.  

Solution: We have, [
5 3 7
3 26 2
7 2 10

] [
𝑥
𝑦
𝑧
] = [

4
9
5
] 

[
15 9 21
15 130 10
7 2 10

] [
𝑥
𝑦
𝑧
] = [

12
45
5

]                               (3R1 , 5R2) 

[
15 9 21
0 121 −11
7 2 10

] [
𝑥
𝑦
𝑧
] = [

12
33
5

]                            (R2 , R1) 

[
35 21 49
0 11 −1
35 10 50

] [
𝑥
𝑦
𝑧
] = [

28
3
25

]                            (
7

3
R1 , 5R3,

1

11
𝑅2 ) 

[
5 3 7
0 11 −1
0 0 0

] [
𝑥
𝑦
𝑧
] = [

4
3
0
]                                (R3 − R1 + R2 ,

7

3
R1) 

The rank of coefficient matrix and augmented matrix for the last set of equations are both 2. Hence, 

the equations are consistent. Also, the given system is equivalent to  

5x + 3y + 7z = 4, 11y- z = 3  

y = 
3

11
+

𝑧

11
, 𝑥 =

7

11
−

16

11
𝑧 

where, z is a parameter. 

Hence, x = 
7

11
, 𝑦 =

3

11
𝑎𝑛𝑑 𝑧 = 0 is a particular solution  

 

GATE QUESTIONS 
Q1. The following system of equations 

 
2x – y – z = 0 

-x + 2y - z = 0 

- x - y + 2z = 0 
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a) has no solution 

b) has  unique solution 

c) has three solutions 

d) has an infinite number of solutions.                                                                        [GATE 2019]    

                                                                                           
Ans: d) has an infinite number of solutions. 

Conditions: i) If D = 0, then the system of equations are consistent with infinite non- trivial solution  

ii) If D ≠ 0, then the system of equations are consistent with trivial solution (x=0, y=0, z=0) 

D = |
2 −1 −1

−1 2 −1
−1 −1 2

|  

    = 2(3) + 1(-3) – 1(1+2) 

    = 6 – 3 – 3 = 0 

Therefore, infinite solutions 

 

 Q2. One of the eigen values of the following matrix is 1. 

                                  

(
x 2

−1 3
) 

 

The other eigen value is ______                                                                                                     [GATE 2019] 

Ans: 2 

3 + x = 1 + λ2          [Sum of diagonal elements = sum of Eigen values] 

3x + 2 = λ2              [Determinant = product of Eigen values] 

On solving, 

3(λ2 – 2) + 2 = λ2 

3λ2 – 6 + 2 = λ2 

2λ2 = 4 

λ2 = 2     

Q3. The determinant of the [
1 0 1
0 2 1
1 1 −3

] is _____ (accurate to one decimal place).           [GATE 2018]     

Ans: zero 
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PRACTICE QUESTIONS 

Q1. Nullity of the matrix A = [

−1 4 2
1 3 2

−2 1 0
2 6 4

] is 

 (a) 1  

(b) 2  

(c) 3   

(d) 4  

Ans: (a) 1  

A = [

−1 4 2
1 3 2

−2 1 0
2 6 4

]                                    (R2 + R1 , R3 + R4) 

         = [

−1 4 2
0 7 4
0 7 4
2 6 4

]                                    (R4 + 2R1) 

         = [

−1 4 2
0 7 4
0 7 4

 0 14 8

] = 2 [

−1 4 2
0 7 4
0 7 4
 0 7  4

] = 2 [

−1 4 2
0 7 4
0 0 0
 0   0 0

] 

Hence, rank of matrix A = 2 = Number of non-zero rows 

∴ Nullity of matrix A = Number of column of A - Rank of A  

                                     = 3 - 2 = 1  

  

Q2. If A and B are real symmetric matrices of size n x n, then  

(a) AAT = I 

(b) A = A-1  

(c) AB =BA  

(d) (AB)T =BT AT  

Ans: (d) The transpose of the product of two matrices is the product in reverse order of their 

transposes (Reversal law for the transpose of a product). 

Q3. Consider the following statements 2:  

S1 : Sum of the two singular matrices may be non-singular.  

 S2 :Sum of the two non-singular n x n matrices may be singular.  

Which of the following statements is correct?  
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Q13. How many solutions does the following system linear equations have?  

-x + 5y = -1  

x - y = 2  

x + 3y = 3  

(a) Infinitely many  

(b) Two distinct solution  

(c) Unique 

(d) None who  

Ans:  (c) Unique 

-x + 5y = -1                                                   ...(i) 

x – y = 2                                                                   ...(ii)  

x + 3y = 3                                                                ...(iii)  

Solving Eqs. (i) and (ii), we get  

x = 
9

4
 and y = 

1

4
  

which satisfies Eq. (iii).  

Hence, given system of linear equations have unique solution.   

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------Pages missing in sample copy-------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------- 

Chapter 3 
VECTOR CALCULUS 
In general form vector can be written as  

�̅� = |𝑎| ∙ �̂� = 𝑎 ∙ �̂� 

In vector algebra  

�̅� = 𝑎1𝑖̂ + 𝑎2𝑗̂ + 𝑎3�̂�              𝑤ℎ𝑒𝑟𝑒, 𝑎1, 𝑎2, 𝑎3 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

While in vector calculus 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are variables 

Eg : �̅� = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂� is the radius vector 
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3.1 SCALAR PRODUCT (DOT PRODUCT) 

�̅� ∙ �̅� = 𝑎𝑏 cos 𝜃 

Note: dot products always give scalar quantities 

For orthogonal vectors, θ = 90° 

�̅� ∙ �̅� = 0 

𝑖 ∙ 𝑗̂ = 𝑖 ∙ �̂� = 𝑗 ∙ �̂� = 0 

𝑖 ∙ 𝑖̂ = 𝑗 ∙ 𝑗̂ = 𝑘 ∙ �̂� = 1 

3.2 CROSS PRODUCT (VECTOR PRODUCT) 

�̅� × �̅� = 𝑎𝑏 sin𝜃 ∙ �̂� 

Note:  Cross products always gives always vector 

𝑖̂ × 𝑖̂ = 𝑗̂ × 𝑗̂ = �̂� × �̂� = 0 

𝑖 × 𝑗̂ = 𝑗̂ × �̂� = �̂� × 𝑗̂ = 1 

 𝑗̂ × 𝑖̂ = −1                          

�̅� × �̅� = |
𝑖̂ 𝑗̂ �̂�
𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

| 

3.3 DEL OPERATOR (∇ ) 

∇ = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) 

 

3.4 GRADIENT ∅ = (∇∅) 

Where ∅ → scalar quantity 

∇∙ ∅ = (𝑖̂
𝜕∅

𝜕𝑥
+ 𝑗̂

𝜕∅

𝜕𝑦
+ �̂�

𝜕∅

𝜕𝑧
) = ∑ 𝑖

𝜕∅

𝜕𝑥
 

 gives vector as output 

Eg. if ∅ = 𝑥2𝑦 + 𝑦𝑧 + 𝑥𝑧 

Then ∇∅ = (2xy + z) 𝑖̂ + (𝑥2 + 𝑧)𝑗̂ + (𝑥 + 𝑦)�̂� 

 

3.5 DIVERGENCE  �̅� (∇ ∙ �̅�)  

Div�̅� =∇ ∙ �̅� = (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
) (𝐹1�̂� + 𝐹2𝑗̂ + 𝐹3�̂�) 
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∇ ∙ �̅� = (
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
) = ∑ 𝑖

𝜕�̅�

𝜕𝑥
  

Eg.  If    �̅� = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂� 

Then div �̅� = 1 + 1 + 1 

∇ ∙ �̅� = 3 

 

NOTE:  if divergence of ‘F’ is zero then the vector �̅� is known as solenoidal vector 

∇ ∙ �̅�    = 0 

Example 3.1: If ∅ = 𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧, find ∇∅, ∇ ∙ ∇∅, ∇ × ∇∅ at (1, 2, 3) 

Solution: ∇∅ = 𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧  

∇ ∙ ∅ = (3𝑥2 − 3𝑦𝑧)𝑖̂ + (3𝑦2 − 3𝑥𝑧)𝑗̂ + (3𝑧2 − 3𝑥𝑦)�̂� 

(∇∅)1,2,3 = (3 − 9)𝑖̂ + (12 − 9)𝑗̂ + (27 − 6)�̂� 

(𝛁∅)𝟏,𝟐,𝟑 = −𝟏𝟓�̂� + 𝟑𝒋̂ + 𝟐𝟏�̂� 

∇ ∙ ∇∅ = 6𝑥𝑖̂ + 6𝑦𝑗̂ + 6𝑧�̂� 

(𝛁∅)𝟏,𝟐,𝟑 = 𝟔�̂� + 𝟏𝟐𝒋̂ + 𝟏𝟖�̂� 

∇ × ∇∅ = ||

𝑖̂ 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

3𝑥2 − 3𝑦𝑧 3𝑦2 − 3𝑥𝑧 3𝑧2 − 3𝑥𝑦

|| 

             = 𝑖(̂−3𝑥 + 3𝑥) − 𝑗̂(−3𝑦 − 3𝑦) + �̂�(−3𝑧 + 3𝑧) 

             = 0 

 

3.6 CURL ∙ �̅� 

Curl ∙ �̅� =∇ × �̅� = |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

| = ∑ 𝑖 ×
𝜕𝑓

𝜕𝑥
 

NOTE: if Curl  �̅� = 0 then �̅� is an irrotational vector. It can be represented as �̅� =∇ ∅                        

(where ∅ is known as scalar potential) 

Example 3.2: Prove that ∇∅ is an irrotational value 

Solution:  

∇ × ∇∅ =
|

|

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑧

|

|
 



GOODWILL GATE2IIT          GATE AEROSPACE - MATHEMATICS 

 www.goodwillgate2iit.com +91 – 9933949303 / 7338451418  Page 11 
 

             = 𝑖̂ (
𝜕2∅

𝜕𝑦𝜕𝑧
−

𝜕2∅

𝜕𝑦𝜕𝑧
) − 𝑗̂ (

𝜕2∅

𝜕𝑥𝜕𝑧
−

𝜕2∅

𝜕𝑧𝜕𝑥
) + �̂� (

𝜕2∅

𝜕𝑥𝜕𝑦
−

𝜕2∅

𝜕𝑦𝜕𝑥
)  

              = 0 

3.12 INTEGRAL THEOREM 

(1) Green’s Theorem 

If P, Q are the function of x, y and having continuous partial derivatives in a region r enclosed by a 

closed curve C then 

∮(𝑃 ∙ 𝑑𝑥 + 𝑄 ∙ 𝑑𝑦)
𝑐

= ∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦 

 Green’s theorem in plane is a scalar of stokes theorem. 

 

(2) Stroke’s Theorem 

If S is an open surface enclosed by a closed curve C and �̅� is a vector point function having 

continuous partial derivatives then 

∮�̅�
𝑐

∙ 𝑑�̅� = ∬𝑐𝑢𝑟𝑙 
𝑠

�̅� ∙ 𝑑�̅� = ∬𝑐𝑢𝑟𝑙 
𝑠

�̅� ∙ �̂� ∙ 𝑑𝑠 

 This is the relationship between line integral and surface integral 

 

(3) Gauss Divergence Theorem 

If S is an close surface of the region and closing a volume V and �̅� has continuous partial derivatives 

then 

∬�̅� ∙ �̂� ∙ 𝑑𝑠 = ∭𝑑𝑖𝑣�̅� ∙ 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑣

 

 This is a relationship between a surface integral and volume integral 

 Gauss divergence theorem is referred to as Green’s theorem in space  

 

(4) Scalar form of Gauss Divergence Theorm 

∬𝑃𝑑𝑦𝑑𝑧 + 𝑄𝑑𝑥𝑑𝑧 + 𝑅𝑑𝑥𝑑𝑦 = ∭(
𝜕𝑃

𝜕𝑥𝑉

+
𝜕𝑄

𝜕𝑦
+

𝜕𝑅

𝜕𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧 

𝑠
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GATE QUESTIONS 
Q1. Vector b⃗  is obtained by rotating a⃗  = î + ĵ  by 90° about k̂, where î, ĵ and k̂ are unit vectors 

along the x, y and z axes, respectively. b⃗  is given by  

a) î - ĵ   

b) -î + ĵ    

c) î + ĵ   

d) -î - ĵ                                                                                                                                        [GATE 
2019] 

 

Ans: b) -�̂� + �̂�    

Given: 𝑎  = 𝑖̂ + 𝑗̂ 

�⃗�  = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] {
1
1
} 

= [
0 −1
1 0

] {
1
1
} 

= −𝑖̂ + 𝑗 ̂

Q2. A scalar function is given by f(x,y) = x2 + y2. Take î and ĵ as unit vectors along the x and y 
axes, respectively. At (x,y) = (3, 4), the direction along which f increases the fastest is 

a) 
1

5
 (4î - 3ĵ)  

b) 
1

5
 (3î - 4ĵ) 

c) 
1

5
 (3î + 4ĵ) 

d) 
1

5
 (4î + 3ĵ)                                                                                                                              [GATE 

2019] 

Ans: c) 
𝟏

𝟓
(𝟑�̂� + 𝟒𝒋) 

Given: f(x, y) = x2 + y2 

∇f = 2x𝑖̂ + 2𝑦𝑗̂ 

∇f |(3,4) = 6𝑖̂ + 8𝑗̂ 

(∇𝑓) = 
6�̂� + 8�̂�

√36 +  64
 

= 
6�̂� + 8�̂�

10
 

= 
1

5
(3𝑖̂  +  4𝑗̂) 
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Chapter 8 
FOURIER SERIES 
8.1 CONDITION FOR A FOURIER EXPANSION  

Any function f(x) can be developed as a Fourier series  

𝑓(𝑥) =  
𝑎0

2
+ ∑ 𝑎𝑛

∞

𝑛=1

cos 𝑛𝑥 + ∑ 𝑏𝑛 sin𝑛𝑥

∞

𝑛=1

 

where 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 are constants provided.  

(i) f(x) is periodic, single valued and finite.  

(ii) f(x) has a finite number of discontinuties in any one period.  

(iii) f(x) has at the most a finite number of maxima and minima.  

 

8.2 IMPORTANT FORMULAE 

𝒂𝟎 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝒅𝒙

𝟐𝝅

𝟎

 

𝒂𝒏 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝐜𝐨𝐬𝒏𝒙  𝒅𝒙

𝟐𝝅

𝟎

 

𝒃𝒏 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝐬𝐢𝐧𝒏𝒙  𝒅𝒙

𝟐𝝅

𝟎

 

Example 8.1: Obtain the Fourier series for f(x) = e-x in the interval 0 < x < 2π  

Solution:  

𝑒−𝑥 =
𝑎0

2
+ ∑ 𝑎𝑛

∞
𝑛=1 cos 𝑛𝑥 + ∑ 𝑏𝑛 sin 𝑛𝑥∞

𝑛=1                                … (i) 

𝒂𝟎 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝒅𝒙

𝟐𝝅

𝟎

 

                                                                                  =
1

𝜋
∫ 𝑒−𝑥 𝑑𝑥

2𝜋

0
 =

1

𝜋
 |−𝑒−𝑥|0

2𝜋 

=
1 − 𝑒−2𝜋

𝜋
 

𝒂𝒏 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝐜𝐨𝐬𝒏𝒙  𝒅𝒙

𝟐𝝅

𝟎
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    =
1

𝜋
∫ 𝑒−𝑥  cos 𝑛𝑥  𝑑𝑥

2𝜋

0

 

                                       =
1

𝜋(𝑛2 + 1)
[𝑒−𝑥  (−cos 𝑛𝑥 + 𝑛 sin𝑛𝑥]𝟎

2𝜋 

= (
1 − 𝑒−2𝜋

𝜋
) ∙  

1

(𝑛2 + 1)
 

∴      𝑎1 = (
1−𝑒−2𝜋

𝜋
)

1

2
 , 𝑎2 = (

1−𝑒−2𝜋

𝜋
)

1

5
  etc 

 

𝒃𝒏 =
𝟏

𝝅
∫ 𝒇(𝒙) 𝐬𝐢𝐧𝒏𝒙  𝒅𝒙

𝟐𝝅

𝟎

 

    =
1

𝜋
∫ 𝑒−𝑥  sin 𝑛𝑥  𝑑𝑥

2𝜋

0

 

                                       =
1

𝜋(𝑛2 + 1)
[𝑒−𝑥  (−sin𝑛𝑥 + 𝑛 cos 𝑛𝑥]𝟎

2𝜋 

= (
1 − 𝑒−2𝜋

𝜋
)  

𝑛

(𝑛2 + 1)
 

∴      𝑏1 = (
1−𝑒−2𝜋

𝜋
)

1

2
 , 𝑏2 = (

1−𝑒−2𝜋

𝜋
)

1

5
  etc 

Substituting the values of 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛  in Eq. (i), we get  

𝒆−𝒙 =
𝟏 − 𝒆−𝟐𝝅

𝝅
{
𝟏

𝟐
+ (

𝟏

𝟐
𝐜𝐨𝐬 𝒙 +

𝟏

𝟓
𝐜𝐨𝐬𝟐𝒙 +

𝟏

𝟏𝟎
𝐜𝐨𝐬 𝟑𝒙 + ⋯)

+ (
𝟏

𝟐
𝐬𝐢𝐧𝒙 +

𝟏

𝟓
𝐬𝐢𝐧𝟐𝒙 +

𝟏

𝟏𝟎
𝐬𝐢𝐧𝟑𝒙 + ⋯)} 

 



 

 


